SPRAWOZDANIA

INSTYTUTU INFORMATYKI
UNIWERSYTETU WARSZAWSKIEGO

Nr 130

Ps Findeisen, P, Gburzynski,
E, Jezlerska-Ziemkiewicz, A. Ziemkiewicz

A PROPOSAL FOR A MINICOMPUTER ARCHITECTURL

[Inf UW REPORTS

(NSTITUTE OF INFORMATICS, WARSAW UNIVERSITY

SFRAWODZDANTIA
INSTYTUTU INFORMATYEKI U. W

IInf UW Reports

Nr 130

F.Findeisens FP.Gburzunskis E.Jezierska-Ziemkiewiczs
A.Z1embiewlcs

A PROFOSAL FOR A MINICOMPUTER ARCHITECTURE

WYDAWNICTUWA
UNIUWERSYTETU WARSZAWSEKIEGDSO
1983

FL ISSN 0239 - 43579
Sprawozdania Instututu Informatukl
Uniwersytetu Warszawskieso (IInf UW Reportsl.

Frace zotosil dnia 8 listorada 1983
doc. Antoni Kreczmar

adresy Autorowd

“ Findeisens P.Gburzunski:
instytut Informatski UW
00-901 Warszawas FRIN p. 850

C_jezierska- Tiemkicwiczy A. Zicmkliewlcz:
instutyt Maszsn Matematycznuch
03-0768 Warszaway ul. Krzuwickieso 34

Wudawnictwa Uniwersytetu Warszawskieso

d-I-ﬁ--_—_iﬂh-—-——-#“-r'————-h——u_q-—----l-uﬂ—_——_—H-l—-—-i—l—ﬂl#n_—--!-_—-ﬂﬂ--—---

Wuydanie I. Naktad 300 easz. Nr GP.II-441/2961/82. Cena 10 zt.
Wukonano w Zokiadzie Mared Polisrafii UW. Zam 3/84,

....3_..

LIST OF CCNTENTS

1- INTHDD“CTIQN S A E B R P ES B S SSsNEENESEDS T ERE EEREEERENE NI N N s " @ w e ®a 3
2. AN OVERVIEW OF THE SYSTEM ARCHITECTURE sacencssa ceesnmanas reses b
2-1- Internﬁl Sagtem l-.lllllill- lllllllll li.lil-ll.l-l IIIIIIII é‘
2I1I1l HEHQT']-EE llllll & B B B A E B S B AN P "B B E BB N B N B I B " B W B B § NN BB W :?
2.1.2, ProCESS0OrS ceecsssmnssenascans CesmssvenmuEnaassue evas &
7.1.2, InterfOCES eeecvevncancnvnssnannnsacsncnnnoves cassees 7

2.2. External S9stie# cecacecncsnsasancencncnsnas cesssmseaasESES 11

3- THE PRIMQRY PRGCESBDR 5 @ s WP BT ER B EEWS 8 W W B B " R R B & # T EEEREEERE. " EEEEREE] 12
Z.1. The ConceplloN caceesa amassanEs Csveessesssumnnas mesame s) P
Z.1.1. Functional Attributes of the FrOCESSOT sessssssssanss 42
3.1.2. Data Representation smmsanwss cesvanwsus cesmesae i4
7.1.3. Structure of the Instructions and ArSUMENLS ceecesces S
I.1.4. Addressing ModES cceevccesarmencnccnnce ceemssssmssEmu®m 21
3.1.5. Interruprls conccnseancsnssanccccnces Seeewsmesssanan . s Lo

3.2. Preliminary instruction 1igt cacans tesssesasmansuusenms caas 30
3.3. Structure of the Frimary PFrOCEESS0OT assessemsasnssnasansss caa 40

4 [3 ﬁUXILIhRY PRDEESSURS W 8 B R NN EN E ® 8 E B8 2 8B B 8 BN BN BN B "W W W R F ¥ F RS o, % & ¥ E 8B W W 42
5. SOFTHQRE II.I..IIIIIIIIII‘I lllllllll & B B N P E @ W B W ER O N B B & @ " & & § B W EE NS 45
5.1. Hardware support for synchronization .essescocanass emwswen 47
5.2- Dﬂerﬂtins Sﬂstem BUF‘S IIIII-IHIIIII-II.IHIIIII llllllll T E B K ‘:‘13

e 3, Standard SOfLWOTE cecvcnoscseasasnnsnnansssomsscocrunns ceawen oo

BIBLIDGRﬁPHY "N EEEENXEN s s P e ASEESERESENESNESEEESEENBRARERRERSR "TEEEENRENNN EE

1. INTRODUCTION

The proeposal for a seneral purpose computer sustem architecture
presented in this parer is not o revolutionary one. It rather well
sticks to the von Neuman’s ideolosvys with its occasional *unorthodox?
deviations beins of a moderate character. We think however that there
are at least a few sgenuine attributes of the proposed architecture
which may b2 of some interest to the reader. They mainly reflect our
opinion on what are the needs of an up-to-date sustem prosrammer. It
seems that the existing computins machinery still fails to meet a
substantial part of them.

The historical backsrounds of this desisn must be dated since 1977
when the idea of Loslan (c.f. [2]) as o base machine lansuase was born
in IIUW. The research on Loslany beins a stronsly obdect-oriented
seneral purpase prosramming lansuases covered several software and
hardware problemss e.s. related to memory allocation and protection
techniques. The solutions to those problems (some of them turned out
to be auite non-trivial? produced o number of postulates for hardware
designerss which contributed to the notion of a Loslan machines as
viewed by the particiepants of the prodect. Some of those postulates
(rarticularly those of a more seneral nature) have been adopted in the
pregsented prorosal ..

In 1¥ol a srour of IMM research stuff directed by Ela Jezierska
oraanized o number of wmeetings and discussions directed at the
formulation of the {undamental ideas of ¢ new vpolish minicomputer -
the so called Solid (c.f. [i1). The rrorosed modern architecture was
ctronaly oriented towards the C prosrammine lansuascs which was mainly
reflected 1in the concertion of a C-code (its desisn has never been
finished? to be used as a basis of the user-extendable wmachine
instruction set. @ number of. the rostulated attributes of the Solid
{e.s. f{ounctional seecialization of the processorss interfacess i/0
1deolosys e.t.c) have found their close relatives in the propasal . "The
idea of devotins the computer to C has been siven uep however.

In early 1983 a prodect teawm orsonized by prof. Andrzed Janicki

started to work on the basic desisn of a new minicomputer (c.f. [41).
Ihe desisn was ordered by the Foreisn Trade Enterprice Metronex with

intention to be wused as o basics for an international cooperation. The
contents of this parer wmay be viewed as the contribution of 1its
authors to the prodect.

The auihors do not mean to conceal the fact that however senuines
the desisn remains under some influence of the Vax11/780 architecture.
This may be observed e.s. in the share of the addressins modes. One of
our intentions was to remove some disadvantases of this architecture.

At least they arpeared disadvantases in our opinion. Another computer
architecture that rather sisnificantly influenced the desisners? work
was the Mera-400 of our native origins. Althoush not all 1ts clements
can be now compared to the most recent achievements 1n computer

technolosyy some of them certainly deserve to be further develored and
applied.

A susbstantial contribution to the desisn from a number of our
friends and coleasues - members of the erodect team — 1s to be hisghly
appreciated. In particular we feel oblised to mention Jarek Deminets
Jerzy Dzosar Andrzed Karczmarewiczy Antek Kreczmar and AndrzeJ
Litwiniuk. The desisn would have never reached its present level of
completness if not for the inestimable ideas of these sentlemen.

...6_
2. AN OVERVIEW OF THE SYSTEM ARCHITECTURE

2.1. Internal System

In the desisned system two essential parts can be dietinsuished.
The so called Internal System is composed of the Primary and Auxiliary
Frocessorsy main memory and interfaces. External Sustem is constituted
of mass msemory» peripheral devices and communication lines.

WIDF BUS
PRIMARY
PROCESS0RS
MAIN MEMORIES
- ' PPK
-n
MM,
- EVENT BuS
M. MK |
[
AUMLQ.ARV
PROCESS DRS
BYTEBLS

Structure. of the svystem kernel

- 7 -

The sepatial structure of the Internal Syustem i1s concentroted.
Howevery due to 1ts modular construction: it ic <cusceptible for a
flexible modification ands in particulary an increwmental expancion.

2.1.1. Memories

The concept of memory orsanization in this desisn is derived
directls from the solutions applied in Mera-400.

The main wsemory i1s losically divided into pases of fixed lensth

(4KB) . The pases can be orsanized into address spaces whose number is
limited to 256. The zeroth oddress space 1is dedicated for the

operating sustem. A sinsle address space can consist of up to 2048
pasesr l.€. 1ts size 1s limited to & ME.

With each prisary processor there is associated a “private” memory
page. The pase can be referenced as the first 4096 bytes of address
space zero. Thus oaddresses less than 40946 (in address space zero)
determine distinct butes for distinct primary processore. The accecss

to all the private memory pases in the sustem is provided only for the
Sustem rMonitor.

In the system there occur memories of different 4tyepes and of
different access princierles. The dMain Memory (MM) 1s accessible to all
active system elewentsy e.gs. for all processors. A subset of Main

Memorys corelated directly with the erocessorss creates the space of
Local Memories.

To addiust the speed of the processore to that of the other elements
of the system (especially memory)r some fasty low capacity memories

bufferinsg the information transmitted from/to the processors are
emploved.

The Main Memory

mr L i ETEN (D = TR ST RS PSS (e TR g mpem e e

Memory references are performed wvia virtual iddresses. The waain
memory of the system creates a virtually addres..able space of 256#*8
ME. Ur to 32 MB of rhuysical memory may be implemented. The capacity of
a phusical memory module is estimated as 0.5 MB. Dependins on the
technolosy available the capacity may be enhonced to 1 MB. The
physical modules are constructed of semi-conductor elements with as
larse caracities as reasonable (e.s. 64 Kb). Whatever their caracitys
it is assumed that the elements with the decreased power consumption
in power—down state will be used.

The main memory of the minicomputer will base on solid-state chips
(birpolar chies are susaested) with the cucle of about 300 ns» and chip
caracity not less than 64 Kb. There is a possibility of sradual switch
to memory boards with sreater capacities.

The Local Mewory

ki Py S W T s R S R S N SR SEEN, RN NS AR S

The Local Memory of the sustem consistis of the set of dictinsuished
pases of the Main Memory. Local Memory coorperates directly with a
processor and with one of the interface busses (Widebus or Butebus) of
the internal system.

The caracity of each particular Local Memorsy is 4 KR. Local Memory
can be referenced by the erocessor beins its “owner”. For the
diasnostic or bootstrap purposes an access to Local Memories from the
interface is desisgnedr but it is performed on special principles.

Buffer Memories

e el =SS TR LN LI W B P S SRS S T SN DS S o d e

Fach primary processor is equipped with very fast memory of small
capacity which buffers the stream of instructions and dato on the way
from/to the Main Memory. The Auxiliary Processors are eauipped with
buffer memories to cobtain the continuity of information transmission
and to smake the error correction in the transmission (e.g. in Mass
Memory Processor) feczible.

Internal Memories of the Processors

R EEE MRS PR P T EREE WAE B e s Bl S il s i ot sy e G e s oG R G SN B S BT P S areSD S miei sl

The PTOCESSOrS of the system have internal memory resources. They
are microerosram and prosram control memories of ROM and partly RAM

tyre (for dynamic extension or redefinition of processors?! functions)

and auxiliary RAM type memories for storins internal variabless
workins buffers and stacks orsanizins the processors’ work.

2.1.2. Processors

The number of primary processorss which are fundamental eprocessins
units of the sustemr is limited by 8. Thie restriction comes from the
estimated throusheut of the main interface (the so called Widebus).

-9 -~

Increasing the number of primary processors above this lismii would not
result in a significant improvement of the system performance.

The number of auxiliary processors 1¢ not subJect to such severe
restrictions as in the case of erimary processors {auxiliary
processors would cause much less interface contention). It i1s only
confined by the total number of all processors in the sustes which
cannot exceed 16. The particular confisuration of processors in anw

given system is composed accordins to the presummed cnd veser-specified
assortment of aepplications.

2.1.3 Interfaces

The sustem orsanization constrains very hish requirements for the
interface betuween primary processors and moin - memory. It ic assuased
that the processors will be able to execute about 700 thousonds
instructions per second with each instruction oreratine on &6 butez on
averase. laking into account alec the peak trancsfer rate for dicke.
which for nowodays disks 1s 1.2 MB/¢ we arrive at the conclusion that
the throushput of the interface must be at least of the value of 10
ME/s.

Apart frowm the Widebuss which is the foastest and widest internal
interface of the minicomputers there are two more “busec” dedicated to
service less critical transfers. The so called “"Butebus”™ i1s wused tc
communicate the auxiliary erocessors with main mesmorys and the
Eventbus to communicate the processors between each other. R11 the
system interfaces work asunchronously with confirmations (handshakel.

The interface is equipped with a sepecial bit IB (Interlock EZii)
which may be set and cleared with the rule of exclusivity. This
mechanism allows for mutual time exclusion of selected instructions
and operations. The processor executins such an instruction (for
example insertins an element into a aueue) must seb IB for the Lime of
its execution. Howevery if IB was already set then the instruction
execution is delaved until the processor is able to set the bit. The

instructions that set IB for the +time of their (xecution are called
indivisible instructions.

The internal sustem interfaces: Widebuss Buytebus and Eventbus hove
no possibility of extension in the sense of space. Beccuse of the
reauirements for the transmission speed the interfaces are assumsed to
be limited in lensth. The space extension of the sustea 1s done with
the help of external interfaces.

The Widebus interface transmits: data of the width up to 8 butes

...10....

with the possibility of double +truansmissions (2%8 butes)s 3Ii-bit
virtual addressesy controly checkins and handshake sisnals. The
interface data lines are two-ways the other lines are one—-way.

Three—state elements are csuyggested to be used for the
implementation of the interface. The circuits controllins the access
to the 1interface should be build in the bi-polar technolosy of veru

hish speed.

The workins cucle of Widebus 1s 790 ns Y1350 ns for double
transmissions) on averase. In this way the throusheut rate of about 10
HB/s 1s achieved.

Butebus facilitates the Auxiliary Processors?! access tao main
memory. The technolosy is similar to that applied in the Widebus case.
The assumed throushput rate of Butebus amounts in about 2.5 HME/s,

The Eventbus interface has the width of information line up to 40
bitssy 24 addressins liness 4 lines for identifyins both the sender and
the receiver of the messases control and handshake lines and service
requirement lines. ALl lines of the Eventhus are two-woy. The Eventbus
transmission rate has no significant influence on the recsulting sustem
perf ormance.

2.2. External Suystem

The minicomputer communicates with 1ts devices and surroundinecs
throush separated interfoces conformine to the commonly known and
accepted standards. Amons those interfoaces are:

¢ interfaces to wmass wmemory devices (the susgected standard capacite
of a single disk unit should not be less than 30Mb) 5§

¢ interfaces to peripheral devicese and connections with intellisent
terminalss

¢ obJect connections (Camacy Inteldisit FIs IEEE-488: Proway)s

¢ serial transfer i1interconnectionss with several sperds oand
protocolss

¢ interfaces +to specialized 1local nete (i.e. Nokias Ethernet and
others)y

¢ interfaces 410 associated computer sustems (Unibuss Q-bussy Multibuc
and others).

All i/0 transactions in the minicomputer are performed or assisted
by the Auxiliary Processors. AnNY primary processor can initiate such a
transactiony examine 1its status and/or teraminate 1t.

Whenever an 170 creration is initiated on a specified auxiliary
processor the invoking primary processor supplies a 40-bit arsusen:
which specifies the tupe and parameters of the requested action. In
particulars this arsument may include an address of a table in memory
where some more compieX and sorhisticated information mey be included.
In sgenerals the format and expected contents of the arsumenis of or
i/o0 oreration wmay deeend on the kind of the auxiliary eprocessos
involved as well as on the operation tyre. After the desired action 3¢
finished the auxiliary erocessor sends the peitinent specificatinon
along with an 1interrupt to the sustem. The b-sic conceots ot the
interrupt mechanism are presented in J.1.9.

3. THE PRIMARY PRUOCESSOR

3.1. The conception

J.1.1. Functional Attributes of the Frimary Processor

The primary processor 1is equipped with 16 general purpose 40-bit
resisters denoted RO-R1S which are homosenous (have equal rishts).
Some slisht and immaterial exceptions from this statement are
delineated in J.1.4. (addressins modes). The instruction counter (IC)
does not count toc the pool of those registere (which is a difference

to POF-11 and Vax-11).

Some of the machine instructions (e.s. double precision floatinse
soint aritheetic) may orerate on resister pairs. Such a epair is alwayus
constituted of two consecutive resistere (note that RO is the
successor of R19).

There 1s a special one-bit mark M associated with each resister.
¥henever o quantity of data 1is written into o regsister ite mark
becomes cleared. There 1s however one exceetion from this rule. &
special instruction (c.f. Z.2.) can be used to load sowmething into the
specified resister and lisht its mark. The marks reflect a part of the
hardware support for hish-level oblJect-oriented lansuases.

Arpart rrom wmarks there exist four other one-bit flass associated
with the processor rather than earticular registers. Those flagsy
denoted by Zs Ns Vs C» corresrond to the analosous flags of FDOP-11 or
Vax—11 and uvsually indicate several arithmetic eventes.

Amons the special registers of the primary processor the most
important is the so called Status Resister. It ic comproced of a number
of fields which are listed below (bit-length of each field is
specified in parentheses):

IC (24) - Instruction Counter which contains the addrecs of the
next instruction to be executed. The instruction is

fetched f{rom that address accordine to the so called
Code Space Index.

CSI (8) - Code Space Index - this field of the status resister
specifies the current memory space for prosram code.
Whenever CSI contains zero (i.e. the zero code space is
assumed) the erivileged instructions are enabled ond

lesal.

DSI (8)
SSI (8
WREN (1)

(3)

Marks (16)

cC (4)

Iov (1

FUN (1)

(2)

..13..

Data Space Index - this field contains the index of the
current memory space for prosram data.

Secondary Data Seace Index. The user may simsul taneously

gccess two different data sepaces (see below). This field
specifies the index of the second data space.

Write to Secondars Data Space Enable. When this bit is
set to one the secondary data space maoy be written into.
Otherwise an attempt to write anvthing into this space

would cause an interrupt.

Processor Priority - the contents of this field specify
the level of interruets which are allowed to be accepted
and serviced in a siven moment.

Trap. If this bit is set to one an internal interrupt
{(trap) 1s +trisserred after each execution of a
instruction.

Reserved.

The M-flass (marks) associated with the seneral purpose
processor registers.

Condition Codes - the indices of arithmetic events
(ZNUE) .

Inteser Overflow Trap Enable. Settins this bit to one
causes that wnenever an overflow haspens durins
execution of an inteser arithmetic oreration it will
result in an internal interrupt (trar).

Floatins Overflow Trap Enable - if tiis bit is set +to
one a floatins underflow trissers an internal interrurt.
Otherwise the execution continues with the zero result.

Reserved.

The last 24 bits of the Status Resister are losically encapsulated
into the so called Prosram Status Resister (PSR) which 1s directly
accessible to the user. There exist (c.f. 3.2.) non-privilesed
instructions that can read the PSR as well as chanse its contentis.

14

The State Resister of a erimary processor includess among others:y
indices of code and data memory spaces. The instructions to be
executed (the prosram code) are fetched from the current code sepace.
Most of arsuments for the instructions are located in data spaces

(c.f. 3.1.4.).

All the primary processors of a siven sustem confisuration are
indifferent and have equal rishts and privileses in accessing the
global resources of the system. Some losical concepts of the solutions
relevant to the Primary Processor are implied by the fact of the
potential coexistence of a non-trivial number of its cooperatins

COPl€S.

In particulars each primary processor is equieped with a erivate
clocks 1.e. a separated 24-bit resister which can be switched between
the following two states:

¢ clock stoepped - the contents of the resister are freezed and they
do not chanse 1in time:?

ciock runnins - the value in the resister 1s decremented by one
each fixed interval of time (e.s. 0.1 ms)y when zero is reached a
special interruet 1s trisserred.

The processor cleck may be starteds 5tenped: read and preset by
suitable instructions. Besides the presented private timers of primary
crocessors there exists a 9labal day-time clock combined with a

calendar.

J.1.2. Data Rerresentation

Af ter settins acquainted with the well known architectural aspects
of the exaistins 16 or 32-bit minicomputers (Pde-11, Vax-11)» and after
havins listened to the opinions of their wmiscellaneocus wuserss the
authors came to the conclusion that these solutions are tainted with
the folowins two basic defects:

Firsty the 32-bit address size certainly adds to a
significant waste of wmemory space. _This size was
calculated on the basis of estimations which anticipated
that demanded capacity of the winicomputer address field
arows by three bits each two vears. It cseems: however:
that one should not put too much faith in such
predictions. After the sisnificant extensions aof the
lons-lived 16-bit address size have come into realitys

- 15 -

those demands become seriously accommodated. The authaors
are profoundly convinced that 16 Megabytes of a virtual

addrecs space would be a satisfuyins quantum for a lons
time.

Seconds the floatins epoint arithmetic based on 32-bit
representations (with 64 bits in double perecision) 1s
highly criticized by many numerical analysts. Most of
complaints are due to the small exponent size which
impOsSes too severe restrictions on the ranse of
represented numbers. Any attempts to extend the exponent
by borrowins a few bits from mantissa result 1n an

intoleraole lost in precisiony beins anyway tooc poor for
many tuypical applications.

In a determined pursuit to ameliorate the disadvantases mentioned
above the authors save 1in the erincieple that _the numsber of bits
occupied by an elementary data quantity should be a power of two (e.s.
8y 16y 32y 64 - for Vax-11). Neverthelesss the notion of bute has been
fully retained tosether with all its conseauences. It meancs that each
address in memory is an address of a byte. Any addressable obJect muct
start from a byte boundary and be composed of an entire number of

butes. The notion of word is dispensable: in practice there 1is no such
thins.

The assumed sizes of the elementary objects resulted from thoroush
and deep considerations around the followins premises:s

It freauently happens that the 16-bit size of an
inteser number appears too short. On the other hands 1t
feels that relatively slisht extension of this size would
substantially improve the situation without need to recall
to a multirple precision. This orisinates the idea of the
24-bit inteser format which is advised to be used in
system as well as standard software.

In authors? opinion the 40-bit size of rcals is a well
balanced compromise between the defective 3 -bit floatins

point formats and double precision (bei.s wusually a
needless expense). The experts in Numerical Analusis who

consulted this proposal asserted that it we:l covers all
tupical applications of the floatins point arithmetic.

The 40-bit format of inteser numbers is wmainly
constrained by the ANSI reaquirements for Fortran-4 and
Fortran-77. These requirements seecify that the sinsle
precision floatins epcint number should be of the size of
inteser. The need to obey <(at least ortionally) this

16

specification leads usually to come waste - wherever reals
and intesers are of different sizes (e.s. Pdr-11). One of
the non-neslisible intentions of the auvthors was to
facilitate an effective and compatible implementation of
Fortran. This smotivates the 40-bit inteser {format which is
also recommended as the standard format of intesers for
HLL compilers.

Under the above premises the sizes of particular elementary cohJects
are lookins as follows:

bute - 8 bits»
address ar short inteser - 24 bits,
inteser - 40 bits:
floatins point number - 40 bits:
double floatins point number - 80 bits.

The cbiects belonsins to the above classes will be denoted further
by B» Ar Nr F» D respectively. In some very special cases (c.f. 3.2.)
there arpears a pair of 40-bit inteser numbers with certain properties
of a sinsular obJsct. Such an obJect will be denoted by L.
Occasionally there smay happen an addressable data gquantity which does
not fall into any of the presented catesories. All such exceptional
casesy uwhich are rather fews are detailed in 3.2. (instructions list).

For an addressable obJecty its address is the address of its last
bute. Conseaquently it is the least sisnificant bute (which notion is
obvious e.s. for an intesgser number). The order of bytes is thus the
sese as in Pde-11 and Vax-1i.

Despite obvious differences in obJect types and lensths there is a
complete arithasetic {additions subtractiony wmultiplication and

division) provided for each catesory. Whenever sisn problems are
relevant one should remember that addresses are alwavs positiver i.e.

the leftaost bit of an address is sidnificant.

Below is epresented the arransement of the particular tuepes of data
in the seneral purpose registers of the primary processor. Resicter
bits are numbered from zero: the lower numbers correspond to the less
sianificant bit positions. The presented schewmas also reflect the
arrangesent of data in memory: the lower memory locations (lower

...1}'-'_

addresses) correspond to the less sisnificant bates of the ctructure,

TSNP S SN R TRy e —h--dl-l--——ﬂ—_——_——-—-—_-_l—-—ﬂ-—#ﬂ—d--——-t-ld-—lr—ﬂ—-—ﬂl—-nm———ﬂd-—- e g S s S

{) bute {
39 8 7 0
' ' address or short inteser |
39 24 23 0
! integer number !
39 0

Floatinse point numbers are represented by pairss exponents
mantissa. The encoded number reads as:

mantissa % 2 %% exponent

-——_l_----—-Hl---_“_-_-'—'_-_-H--ﬂ—---ﬁll_---'_-_ B el SR - g [. S e T PEEE WA i Gl Al G AN S S SN SN —

u——— W TR N W —_—-—-—“—“————r-_-”—ﬂ“u—_-ﬂ_—_—l —-“.ﬂ_-‘*“-ﬂ—_—'-—_q—*—--ﬂ—m—_—m

The two-complement binary exponent of a floatins point number 1s
hiansed by 1024 (decimal). Thusy encoded values of exponents are alwass
viewed as non-nesative inteser numbers. For example: exponent ¢ 1s
encoded as 1024y i.e. 400 hexadecimals analosicallys the lowest
cossible patterns i.e. Oy represents the lowest acceptable exprcnent
which is -1024.

The mantissa also conforms to the standard two-complement notation
ands when normalized and different from zeror 1t rearesents a fraction
which falls into [1/2:1) or [-1,-1/2). The norwalized zero value 1s
represented by five consecutive zero butes.

A double erecision floatins point number 13 encoded in two
consecutive registers (or in 10 consecutive- byt*s in memory). The
exponent tosether with the most sisnificant part of the mantissa (the
single precision part) are located in the register with the lower
number (modulo 16). The second register includes the 40-bit mantissa
extension.

-.18_

— i A T T—— T — A I S S e s el RS BT SRS B S Al ol pee e U RN A S S U W A, e G S T e ——————————

! B ! exponent ! mantissa !
#;;_‘;; _________ 28 27 0
T waniissa extention T
;;—__------ - o 40

The data formats presented above are retained when the encoded
entities are located 1in wmemory rather than registers. One should
remebery howeversy that the address of a data item addresses its last
buyter 1.2. 1t corresponds to rocitions 0-7 of a register.

3.1.3. Structure of the instructions and arsuments

Each wsachine instruction: whatever the number and tupes of its
araumentiss occupies an entire number of buytes and starts with an 8-bit
creration code (opcode). In some particular cases the opcode may be
continued on the next four hits.

The collection of all machine instructiones mav be classified with
respect to the exeected number of arsumente and their acceptable
formats. The notion of the =0 called standard arsument rlavs an
imporiant part in classification of the incstructions. The standard
araumeni 1s described by the <o called leading byte which is usually
followed by a further specification. The format of the leadins bute is
presented belou:

T G el e ekl i S s mi SR S S S e S

Bt e e I T S . e — A S . i S

wheres

as - addressins mode ordinal (see below);’

rd - number of a sgeneral opurpose resister? in a sinsular
exceptional case (c.f. 2.1.4.) rd is an extension of am.

For some addressins modes the leadings bute carries the complete
specification of the arsument. For the other maodes it is followed by
an addresss offset (8 or 24 bite) or an immediate constant (8y 24 or
40 bits) whose lensth depends on the opcode.

1?

Regardless of the seneral erinciple exepressed above there are three
values of am which are treated in a special way. One of those specicl
values announces the index. The leadins buyte of such a kind may f(once)
precede any standard arsument. The second reserved value of am denotes
the so called dictionary prefix whichs as in the previcuzs caser moy
once precede any standard arsument. An index may be also preceded by a
dictionary prefix? a dictionary prefixs however» cannot be preceded by
an index. The last of the non-standard values of am reeresents the so
called condition. The only place where such a kind of leadins bute may
occur is immediately after the opcode of an istruction (before

arsuments). The semantics of indexy dictionary prefix and condition 1is
described in 2.1.4.

The seneral format of the standard arsument is presented on the
following diasram:

(standard arsument)

-

;-> (index) === —---% (address) ---)
I i

;—-} (of fset) ---—;
' !
---) (constant) --2

The most important, from the viewpoint of the susiem architecturey
instruction class comprises the instructions whose all arsuments

conform to the standard format. Below 1s presented the suntax diasram
of such an instruction:

The addressing modes of the Vax-11s which in come sense inspired
our solutionss have been recently subJdect to a serious criticism. The
wain reason for obJections 1s in relatively severe code redundancs
caused by the uniform and wasteful formot of arsuments. For instances

to use a buyte constant as an argusent 1t always requires an extra
byte. Analogicallyy 1n the situation when the arsuments of an
instruction are exclusively located in registers (which i not a
seldom case) 1t takes o full buyte to specify each of them.

In order to eliminote such disadvantases and to reduce the code
ienath 1n many tuyricol cases we have desisned some instructionses whocse
syntax deviates a bit from the standard. To the simplest class of such
(abbreviated) instructions belaons those which only accept the
arapaents in regsisters. The format of a “register-regsister”
itnstruction 1s as followss

A Sl ATV R S sl R i PSR TR DO SRR - PN O SOET RS B ewocl imkan cpmlis mieir s e weym Pl el smem memin sose P RS TSR FCTE R LSEE

i A Mo T LT USRS SRR BUW ROTE . CEEES. PR e SR Ty R S GEFr -T e Smoe Gl Bl e s Sma rmmacs oo el SSmen poman mdegs omiesd dmos cimam s omeme

Another class of abbreviated instructions includes some Jumps.
Within this class the followins formats are accepted:

e e sl e e e R dews el D ode e wme cRoie s gl e s s s SFWE oo ST B DN R o R S RS S B PR 2T ES LA R e s oS

i bute offset ‘ opcaode |
1o 8 7 0
; 16-b1t offset | opcode !
23 8 7 0
i 24-bit offset i opcode !

N T . SR TRy D T S . S - S el NS s e S ek e ks iy RS TRES WEEW G geems SAn TS WA RS USSP SRS AN G L WD sl BEbSS SN S dessie e S i

31 8 7 0

The last interestins <clase collects instructions with first

arsument in resgister. The format of such instructions 15 prescnted
bel ow:

i... optional standard arsuments ... ! ext ! K ! opcode !

s & s » = 8 & » & ®» s 3 = s = 16 15 12 11 8 7 0

Let us note that in the last presented format the oecode 1s
extended by four additional bits (field ext).

The standard arsuments dependins on the operation codes represents
one of the obJects By A» Ny Fy Dy Ly which usually (if 1t 1s not an
immediate constant) needs be fetched from o data memory space. Some
exceptions from this rule are in standard Jumes whose tarset arsumenis
represent locations in the code seace. The offset arsument occurrins
in a Jump instruction specifies the so called displacements i.e. the

difference between the tarset memory address and the current value of
IC.

7.1.4. Addressins Modes

Eefore presentine the addressins modes of the new minicomputer let
uUs say a few words about motivations which directly influenced our
decisions and finally brousht us to the presented solutions.

The most recent world-wide trends 1in sof tware are stronsly
attroacted in direction of unified prosramming emvironments based on
abiect-oriented hish level programming lansuases (e.s. Adas Loslany
Smalltalk and many others). Amons these base lansuases especially
interestins and promisins are those which also provide for eparallel
computations. It seems obvious thaty whatever the future of Ada and
Loglans the efforts towards develorement of the eprosramming
environments of such a kind will not be stopped soon. The eresented
basic desisn rewmains under strons influence of thie conviction. In

particulars we do not attach too much importance to the notion of ¢
stack pointer (Pde-11s Vax-11) located 1n a dedicated seneral purrose

orocessor resisters as this notion has @ much limited ranse ot
arplications when wused 1n an obiect-oriented parallel computing
environment.

In any given moment of its activity a Primary Processor can QCccess
three address spaces described by the contents of three address space
recaisterss

- D .

B e

- code space (CSI)»
- data seace (51}
- secondary data seace (SSI).

The contents of the address space resisters need not be differents
in particulary dato and code of a prosram may OCCURPY OnNe common
address space.

lata addresses ended with =zero (on the most sisnificant bit
position) reference the primary data space. 6aGnalosicallyy any data
address whose most sisnificant position contains one references the
secondary data space (modulo 2¥x23). Thus the maximum cize of a dato

space becomes 4 mesabytes. Both data seaces: howevery may be mersed
into a sinsvular continuous area of 146HD.

The size of the code sepace 1is strictly limited to 8Mb. Whenever an
attempl is made to reference an address with i1ts leftmost hit set to
oney 1t is treated as an error which causes an internal interruet.

Two of the addressins modes presented below (5 6) may seem rather
intricate and unnatural to the user of a traditional computing sustem.
These two modes (tosether witlh Marks) considerably help to implement
advanced access methods to senerally viewesd structural obJects
orsanized 1in dictionaries. Being equipsped with these addressins modes
the processor architecture provides for an effective and convenient
splution Lo the extremely hard soal which 15 an orsanization of a fast
and sofe access to the obJdects in the situation when:

- gbJdects wWwith variable sizes are duynamically created and
removed which results 1in & need for a periodic or
continuous (on-line) compactification and garbase
collections

- the dictionars as well as @ sinsle obJect mayw be
simultaneously accessed from mans different processors
which action must be safely interlocked without causing too
much resion contention.

wn

...23_

List of Addressing Modes

short literal.
The arsument is an immediate constant directly described
by the contents of the leadins byte. For arsument tures
B: N and & this constant is interpreted as a nonnesative
inteser number from ranse 0-47. For a floatins point
arsument (sinsle and double precision) the constant in
question represents the so called short floatins point

constant whose value is fetched from a ROM table indexed
by the inteser value of the literal.

2R? condition.

This kind of arsument may exclusively appear immediately
followins the oreration code. If the contents of the
least sisnificant bute of resister R are nonzero the
instruction is skipped (but its arsuments are decoded and
interpreted). In the opposite case the instruction 1ic
executed as if the condition mode would not occur.

CR1 index.

This oaddressins mode may only be used to prefix other
wodes rather than directly describe an arsument. The
address indicaoted by the prefixed mode is treated as an
address of a table in memory which then is indexed by the
value in resister R to obtain the desired data.

dictionary prefix.
if the contents of register R are nonzero then the
followins action is performed: The lower (less
sienificant) 3 buytes of resister R are assumed to
represent the so called Virtual (intermediate) ObJect
Address (V0A). The fourth and fifth byutes from this
address are then compared to the upper (more significant)
two butes of resister R. If the comparison rroduces a
nesative result or if resister R includes zero (all bits

cleared), an interrupt is trigsgsered and the exetution of
the current instruction is abandoned. In the opposite

case the initial three byutes from VOA are -used ns a base
address (in the suitable data space) for the standard
addressins mode followins the dictionary erefix. This
base is used as a bias to all addresses which occur in
evaluation of the succedins arsument.

dictionary mode with a bute offset.
If the contents of resister R are nonzerc then the

~d

i

..24...

followins action 15 performeds The lower (less
significant) 3 byutes of resgsicster R are assumed to
represent the so called Virtual (intermediate) ObJect
Address (VOA). The fourth and fifth butes from this
address are then compared to the upper (more cisnificant)
two butes of resgister R. If the comparison eproduces a
neagative result or if resister R includes zero (all bits
cleared) an interrupt is trissered and the execution of
the current instruction i1s oabandoned. In the opposite
case the arsument?s location is determined by the sum of
the oaddress fetched from VOA and the bute which
immediately follows the leadins bute.

K register.
The contents of resister R are used as an arsument.

(R) address in resister.
The oarsument is located in memory at the address
gccupding the lower (less significant) 3 bytes of

register R.

(-R) decremented address in resister.

The arsument’s lensth is subtracted from the contents aof
resister R and then these contents (lower 3 butes) are
used as the address of the arsument in memory.

(R+) agddress in resister incremented.

the contents of resgsister R (lower 3 butes) are used as
the address of the arsument 1in memory and then those
contents are incremented by the arsument’s lensth.

((R+)) intermediate address in resister incremented.
The memory location of the arsument is determined as the
contents of three consecutive butes from the oddress
represented by the lower 3 butes of resister R. Then the
contents of resister R are incremented by 3,

(R+b) bute offset.

The contents of register R augmented by the contents of
the bute immediately followinz the leadineg bste are ucsed

as the address of the arzument.

((R+b)) intermediate address with a buyte offset.

The sum of the conten.s of resister R and the bute
immediately followins the leading buate is used oas the
address of the arsument’s oddress.

(R+a) of fset.

i
rJ
1

]

The contents of resister R acusmented by the addrezc
immediatel y Fnllewing_the lecading bute are vweed oz the
address of the araument.

F ((R+a)) intermediate address with an offset.
The contents of register R ausmented by the oddresc
immediately followineg the leadins byte are wused as the
address of the arsument?s address.

For modes C-F¢ 1f the specified regicster number 1s zero then
the argumentes are evaluated in o different manners

C concstant. The leading bute i¢c immediately followeg by the
argument.

I displacement. The short inteser immediately followins the
leading bytes is added to the instruction counter (IC) to
produce the arsument’s address. Note that the resultins
araument is located in code address spoace.

E address. The leading bute is immediotely followed bs the
address of the.arsument.

F intermediate address. The leadins bute 15 followed by the
address of the arsument’s address.

3.1.59. Interruptis

Internal interrupts are raised within each primary processor. Thew
mas be srouped into two clascess depending on classification of theilr
reasons. The first sroup includes the go called Prosram Traps which
are raised due to come conditione caused by currently executed sachine
instructions. The occurrence of prosram traes is controlled: there is
no notion of a pending prosram trae. The interrupte of such kKind moy
be caused by the followins reasons:

¢ an cttempt to execute a non—-implemented instruc.iony

¢ an attempt to execute an instruction which s illesal 1n the
current modes

§ ~rrors (division by zeros overflow and underflows memorw
egrrors and so on)e

& nowory managsement exceptions (pase faultsy 1illesal dictionarw:
reference etc.l)y

[=

$ extracodes (Sustem Call).

The interrupts presented above cannot be masked or locally
disnbled: they are accepted and serviced as soon as they occur.

The second sroup includes interruepts which are independent of tiwme:l
they may be raised in any moments resardless of the current mode and
status of the processor. Amons them are: power failurey power rectarty
clock interrupts hardware or firmware malfunction and so on. The clock
interrupt may be masked and thus temporary disabledy the alarm
interrupts cannot be masked however.

Iinter—-processor 1interruerts can be viewed as some messagses sent
hetween processors. Such messagsees can be divided into the followins

tupeces
% request to rperform a specific actions

¢ confirmationy 1.e. o messase which informs that a requested action
has been completeds

& exception raised within the sender processor 1.e. failures
zyseension or termination requested by the operateor etc.

Such i1nterrurts—messoses are sent via Ewventbus and are railsed
within the recelver processor.

Interrupt Service

e S R OO TR ST g W TR P BT W T P S R R R

The interrupt service can be divided into the followins stases:

identification of the reason that coaused the interrupty
preservation of the Task State Vectors

iocading of the new Task State Vectors

gHecution of the service routines

return from the interrupt.

dp P e A

The first three stages constitute a sinsle compact action which is
prerformed 1in hardware. The service routiners which 15 entireld
programmables Moy be executed with (partial) admission for
higher-priority interrupts to be received and serviced. Thus there may
be a number of pendins interrupts stacked in o sinsle processor.

Details of the presented stages of the interrupt cservice mny differ
depending on the tupe and purpose of the PTOCESE0r. Frimary
processorsy beinsg completely unifieds are also homosenous with respect

B

to the interruet service.

Dunamric Feconfisuration of the Hardware

[—— S -—_-ﬂ---—il—i-_——_-'—l-'ﬁl"_'“—“!——-ﬂ--—-ﬂ-'—"_

Any failure or malfunction in a system unit detected by harduare
causes an internal interruet 10 the relevant PrOCCSSOT. If
conseauences this processor may send pertinent interruptz to the other
processors in the system. The collection of tools provided by this
wechanisw is sufficient to enable an operatins cyctem to updote the
custem confisurationy if only the severity of the damoge permitc o

Then the sustew may continue its processings althoush pessibly wilh
lost in performance and/or in the assortment of functions.

Friorities of Frocessors

.-—.ﬂ_._—d--i““_"-——-iﬂri-“-iﬂ--—-—

The system interface includes a four-bit internal resictery the o
called Supervisor Frocessor Index (SPI)s whose contents specitye the
index of the primary orocessor being authorized to receive oll
interrupts from the Auxiliary Frocessors.

such o concept allows to treat each primary processor 1n the camc
sanner. There is no need to definitely wceien particular functione o
a given processorry which substantialls contributes to the custer
reliability. In particulary a damage in one primary erecessor neither
has to crash the entire swystem nor even disable one of ite funclions.

On the other hands the possibility to specialize the primare
processors is still allowed. Let us note that even the exfernal
interrupts may be distributed amons them. Namelys while the contents
of SFI are fixeds the processor receiving on interrupt mauw pacs 1t
aver to another processor bu executins a special machine instruction
(c.f. 3.2) which interrupts all the primary proce;sors in the cystem.
all irrelevant receivers of this passed interrupt will isnore 1ts <0
that it will be ricked ue and serviced by itc]l z9itimate addressee.

The contents of SPI are set and chansed by the S::stem Monitor: whioh
say be also possible upon a request from a primar: PrOCEessor.

The hardware stases of an interruet service 1in o PTrifQry ProOcCesscy
may be strescsed as follouwss

{ - The first element from the special list (whose address
ic fiwxed) 1is removeds its address is put intc «
special processor resister SA {(State Address). This
operation is indiviesible.

- -—

E

2 - The Task Status Vector including the 16 general
purpose resisters followed by the processor Status
Register 1is written into wemory cstarting from the

address in SA.

3 - PP is set to the interruet erioritys CSI and IBS1 are
cleareds the contents of SA& are moved to RO.

4 - The interrupt specification and other specific
information (if any) are successively put inte the
general purpase processor resistere startine from Ki.

S - The new value of PC is fetched from a special table
indexred by the interrurt number.

As all the processore in the system have on access 1o the Mailn
Memoryvs the interrupts become o sufficient means for the communication

hetween thes. Each primary processor can send 1interrupts to all the
resaining processors in the confisuration.

Presented below is the list of interrupte of the Frimarw Frocesear
arouped with respect to their priorities:

oriority 7 {interrupts always accerted)

-~ processor power failure
priaority &

- clock interrust (c.f. J.1.1)
priority 5

reserved

priority 4

- upper interrupt from o primary processor
priority 1-3

- interrupts from auxiliary pProcesscors

eriority O

- lower interrust from g primary ProCEsSsSOT
- progsram interrupt

....EC}").._

The upper 1interruert from o primary processor moy e veed Lo zisnal
an emeraencyd events e.g9. o faillure of 1te <endery the lower i
recommended as a means of communication between proceszzors.

gpart from the interrupts presented in the list ubove there may
occur internal interrupte (Lrarcs) which are olways accepted and
servicedsy regardless of the current processor periority. For a trae
service being initiated the processor priority does not chansesr exceert
in the situation when the previous priority was 0 - then the new
priority is 1. The list of the internal interruetis is presented below:

- floatins point overflow
- floatins point underflow

- floatins point division by zero

- unnorwmalized floatins point oeperand

- inteser division by zero

- 1illesal instruction or 1llesal contents of IC
- unauthorized write into Secondary Data Seace
- illesal format of arsument

- araument out of ranse

- 1llesal dictionary address

- index out of ranse

- Sustem Call (extracode)

- Breakpoint Trap (c.f. 3.2

- instruction trap (an T bit set)

- page fault

- memory parity error

30

3.2, Preliminary Instruction List

The proeposed instruction list comprises preliminary instructions
considered in the primary processor design. The instructions were
intended to provide for relatively cimple code seneration for the
compilers of hish level prosrammins lancuases: and al<o to offer an
effective tool for the assembly lansuase prosrammers (see [6]y [7]).

The instructions are divided into thematic classes. Since most of
the operations performed by the instructions exist in several versions
depending on their arsument(s) tuyeey sowme abbreviaotions have been
introduced - to address such sroups by cingle mnemonics. In such cases
the araguments are described by 8 (for standard) the possible postfixes

to the instruction mnemonics (specifyins arsument tupes) are siven.

-—-=- Move S¢ S
postfixess By Ar Ns F
The first arsument is coried to the second one.

--- Negate S
postfixes: By Ay Ny F
The arsusent is nesated arithmetically.

--— Reverse Bits S
postfixes: By Ay Ns F
The arguwent is nesated lo3ically.

--— @Add S¢S
-—-- Sub Sy S
--=~ Mul Ss S
-=—= [1v Sy S

postiixes: By Ay N2 F
The instructions perform the four standard arithmetic

operationss baoth for the fixed-point and
csingle-precision floating-point arauments. The first
arsument is added to (subtracted from: multirlied byy 15

a divisor of) the second arsument and the result 1c
located in the second arsument.

--- Clear S

postfixes: Bs Ar No F
Clearins (i.e. assisnins zero to) the arsument.

-== COompare Sy S
postfixes: By Ay Ny F
Arithmetic compare.

- 31 -

And S+ §
Or Sy S
Xor S S
Erb Sy S

postfixes: By Ay N

The set of elementary logsical operations On a <insgle
butes a 3-turle and a Jg-tuple of butes.

Exchanse Sy S

postfixes: By Ay N
Simul taneous exchanse of the arsuments.
indivisible instruction.

This 1is an

Add Double
Sub Double
Mul Double
Div Double Dy
Move Diouble Dy
Compare Double @y
Nesate Double D
The complement of the above set of
double-precision arsuments.

Dy
Dy
Dy

Dooooo

instructions for

Ry
Ry

Add Numeric
Sub Numeric
Mul Numeric Ry
Div Numeric Ry
Shortened instructions (resister
40-bit arithmetic operations.

DD

arsuments only) for

Add Floatins
Sub Floatins
Mul Floatins R R
Div Floatins Ry R
Shortened instructions
floatins-point orperations,

R R
R R

for sinsle-precision

Shift Arithmetically By N
40-bit number is shifted arithmetically (i.e. with €isgn

extension and overflow test). The first arsument
specifies the shift count.

Rotate By L
The second arsument 1s rotated by the

specified by the first arsument.

bit count

Extended Multiply N» N» Ny L

_32..

The first two arsuments are multielied and added to the

third one. The 80-bit result is stored in the fourth
arsument.
Extended Divide Ls Ny Ms N

The 80-bit inteser number {(first arsument) is divided by
the second arsument. The result is located in the third
arauments and the reminder in the fourth one.

add With Carry Ns N
The first arsument and the C (carry) bit are aodded to

the second arsument. The result is located in the second

arsument.

Modul ol By A

Modul o Ny N
The second argument is divided by the first one. The
reminder is located in the cecond arsument.

Lt B s N =1

Ltd i s 0 =1

Le R y (N + 272y = 1

Lel B s (C + 72y = 1

Gt R y (M + 7)) =0

Gtu R y (L + 7)Y = 0

Ge B y N = §

Gel B s C = 0

Ea R y 2 =1

Ne B y 2 =0
These instructions determine the seecified relations for
the signed and for the unsigned (postfix U} arsumentis
hacsing on the arithmetic flags Z» N and C. The false
value is reepresented by 0 and true by all-ones.

Test Bit Sy B

Set Bit Sy B

Ciear Eit Sy H

Test & Set Bit Sy B

postfixes: B A
The second arsument is wused to determine a wewmory
address. It wmay be reeresented in an arbitrary form
(with the exception of modes 0-4 and 7). The first
argsument constitutes the bit index related to the

specified memory address. The oeeration ics performed on
the specified bit. Testins means locatins the nesated
bit value in the Z-flas. The instructions Clear Bit and

Test & Set Bit are indivisible.

e e —_

All Bits Set By Bs B
All Bits Clear By By E
Any Bit Set Bs By B
Any Bit Clear By By R

#ll the arsumente of the above instructione are bytes,
determined by the standard addressins modes. Each of the
above instructions computes the losical relation (on the
first arsuments) described by the mnemonic. The losical
valuey according to the principles described aboves i=
located in the third arsument.

Find First Set By A

The 1instruction searches for the first non~-zero bit
startina from the memory location described by the first
argument. The index of the found bit (related to the
startins location) is placed in the second arsument.

Dy F

The conversion from the double-precicsion form to the
single~precision form with roundinsg.

Round

Move Address Sy A
postfixes: By Ay N

The address of the first arsument 1ic placed in the
second arsument.

Movel arse ars

Move4 arssys ars
The transmission of two and four butes respectively.

Truncate to Address N

Truncate to Buyte &

Truncate Numeric to Butle N
The instructions test if the arsument lies within the
specified ranse. If not then a trap is senerated.

Re-cache
The 1instruction emits a signal to «all the erimary
processorss which have their code address space register
equal to the contents of the (data or code) address
space resister of the processor executins the
instruction. The sisnal causes reloading of the fast
memory for the codes which is in the primary processors’
equipment.

Nop

[lg-nothing instruction.

~== Index

--- Set PSR

- 34 -

Ay Ar Ay A

It 1s testedy 1f the f§irst argument lies within the
range defined by the lower and upper limit. If not then
a trap 15 3senerated. Succesivelyy +the suwm of the third
araument and the product of array element size by the
difference of the first arsument and the lower limit is
located in the fourth arsument. The - second arsument
locates the “dope vector”: conteinins succesively lower
limity upper limit and array element size.

A

~--- Fetch PSR A

The PSR manipulation instructions.

-—-- System Call By A

The instruction invokes an operating sustem function.
The first and the second arsuments are passed similarly
as the interrupt specification.

-—— Breakpoint Trae

The request to chansgse the prosram mode for debusains.

--—- Extended Function Call

-—— Jump

~--= Insert
--- Kemave

The 1instruction (after 1its decoding) initializes a
microrrosram supplied by the user (if an extension to
the instruction list is iwclemented). The functione of
the microprosram:s 1.¢. further identification of the
instructiony the form and evaluation wmethod of the
arsumentsy updatins IC and the arithmetic flass depend
entirely on the user.

B
Unconditional Jump to the address specified by the
araument.

Ay A
Ay A
The lists manipulating instructions. An list element ic

represented by two addresses: the former element address
and the next element oaddress. The first of +the

instructions above inserts the second arsument as the
list element after the element pointed by the first
arsument. The Remove instruction deletes the 1list
element specified by the first araument and stores its
address 1n the second one. These instructions are
indivisible.

Juap instructions

#“—_*_—_—ﬂ-—_____h

The Jjump instructions exist in three versions: with sinale buyte
of feets with two-bute offset and with three-buyte offset. The offset
appears directly after the operation code or after the first arsument
(Wwith no leadins byte) and is denoted in the focllowins list by X. In
the case when the branch is performed the instruction counter 1ic
incremented by the offset value. For the followins instructions (if
they have X-arsument only) the conditions (addressins mode J) cannot
be applied.

~--=—_ Branch

--- Branch on Lt

--— Branch on LtU

--- Branch on Le

--- Branch on LeU

~-— Branch on Gt

--= Branch on GtU

—-~- Branch on Gel

--— Branch on Eag

--- Branch on Ne

—~- Branch on V set

-—-— Branch on V clear

--- Branch on C set

--— Branch on C clear

--— Branch on False

-—— Branch on True By X
The unconditional and conditional branches. The last tuo
instructions test the conditions stared directly in the
first (bute) arsument.

M 2 DC 2 DE D D D DC D€ XK D€ D€ K

an
>

-~- Branch to a Subroutine Ay X
The branches with a trace which is stored in the first

arsunment.
--= Ti.bnz Sy X
- T.0NZ Sy X

poetfixes: By Ay N
The instructions help to control looes. The first
arsument is decremented (or incremented) bu 1. If the
result is non-zero then a branch by the cpecified offset
is executed.

...36_

Instructions with extended oreration code

I —————————————— A e e i ittt LR

The first arsument of these instructione is always 1in a resgister.

In the list below it is denoted by R.

Add Ker S S
Sub Ky Sy §
Mul Re Sy S5
iy Re 5S¢ S
postfixess Br As N» F
And Ky 59y §
Or Re S¢ &
Xor Ky Sy S
Erb Re S9 &

postfixess Bs A+ N
The three-arsument analosons of the instructions already
described. The difference 1s that the result 1is
transmitted to the resister. beins the first arsument

rather than to the last arsument.

Load & Convert Ry S

postfixes: By Ay N» F
Data loading to the resister with conversion dependinsg

on the arsument typet B -) Ny A - N {(sian extension)s N
- Fy F = N {(conversion).

Load & Set Mark Ry 5

postfixes: Br Ay Ns F
These instructions set the M-flas connected with the
register. The flas will be cleared when any other
instruction which can alter the resister?s contents 1¢

executed.

Load & Nesate Ry S

postfixes: By Ay N» F
The nesated (arithmetically) wvalue of the eecond
argument is placed in the resister.

Load & Complement Ky S

postfixes: By Ay N
Similarly as aboves but with the logical complement.

Junp on None Fe A
Jume on nol None Ky A
Eauals None Rs: H

3?

--~ Not Equals None Fs E
The instructions allow to test if the obiect referenced
by the L-addrecs (see 3.1.4.) located in the rezister
exists. The first two instructions ollow to bronch vhen
the approeriate c€ituation occurrss the lozt two compute
the logical wvalue of the relation and ricce it in the
second arsument.

Sustem (privilesed) instructions

e il iy T S R TS G e Geih ke GRem S TR RN NN NI S NS R e S i Rl gl Sy Sy il ey SN R —

--= Set Interrupt
The instruction gsenerates the prosram interruet.

--=~ Fmit Interrupt
The instruction emits interrupt <eignal to all the
primary processors in the confisuratiaon.

--- EX1t A

An indivisible instruction for return from interruet
service. The arsument is <ctored in the cpecial regicter
SA. The 16 seneral purpose resisters and processor cstate
register are reloaded from o memory table addressed by
SA. Succesively the element specified by SA is inserted
to the 1list whose head is located at a fixed addrecc.
The list is the same used by the hardware interrupt (or
trar) service.

--— Exit From Trap A
The effect of this instruction is identical to that of
the above case with the only difference thaot directly
after 1ts execuiinn the T bit in PSE is not tested.

--- Halt

--=— Allocate Memory Ar A

~—= Test Memory Fagse Ay A
The first argsument describes a physical memory frame:

the second one the new contents of its allocation
register (for Allocate)s or fetched contents of this
register (for Test).

-—-- Set DSI

R
-~~~ Get 551 B

~--—- Read Clock A

....38....

--- Set Clock A
~-- Stor Clock

~-- Run Clock
The instructione for local clock service. The 24-bit

clock resister in equal time intervals decrements 1ts
value by 1+ and 1n case of the zero result forces an
interrupt. The Stor and Eun operations allow to
passivate and re-activate the clock.

~-- Initiate Frocessor Br N
--- Examine Processor He N
--- Stop Frocessaor H

The 1instructions for inter-processor communications in
particular for input/output requecsts and emulation 1in

auxiliary procescsors.

Somecial Operations

i e RS RS P RS RS SR e R gy e e oS kel Fald vl G WAL

With the special operationsy an arsument describing the obJect
location 1in memory 1s denoted by B. It muzt be represented with the
aid of addressing modes: 5-6 and 8-F to define memory location.

~-- Move Bytes By Br A
The first arsument speciiies the start of block to be

copiedy the second one - destination address and the
third aone - number of butes to be transmitted.

-—- Move BRuytes Until Character Es By E
The first two arsumente are as cbove. The third arsument

specifies the bute value which terminates (inclucsively)
the strins to be copied.

--= Tpranslate Bytes By By A
The first arsument describecs the startins addrecs of the

input textr the <second one points to the 256-bute

translation tables and the third one 1is the lensth of
the input text to be copied.

~--- Compare Bytes E: By A
Comparison of two character 5trinss. The arithmetic

flags are set as for the other comparine inctructions.

---— Jcan Bytes B Ay By H

--- Span Bytes By 4y By R
The first arsument defines the start of the input text:»

the second one the lensth of the texts and the third one
the 254-bute tranclation table. The fourth arsument 1z o
masks which is 1lozically and-ed with the iranclated
bytes. The instruction stops when the logical product is
sero (for Scan) or non-zero (for Seanl)s or the 1neut
text is exhausted.

~--- Evaluate polunomial Fsy Ny By F
The third arsument describes the polsnomial coefficient
table located in memory. The cecond arsument 1s the
polunomial desree. The polunomial value for the fourth
arsument is assisned to the firet arsument.

--- Case

--~ Call procedure
The eroper semantics of these instructions will be
described in a more detailed paper. Howevery the need
for their implementation is already marked here.

-4{}“
J.3. Structure of the Primary Frocessors

On the way between a primary processor and moaln memorys connected
to each other by Widebuss there occurrs a fast cache storase with
relativels low capacity. The cache storases provided for both doto and
codesy reduces the resulting main memory cuycle by decreasine the
waitine time of the processor cauveed by the limited speed of interface
and memory., The capacity of the cache storage (with a “transparent

write”) may be 2 or 8 Kb.

A primary processor executes instructions fetched Fram memnory and
communicates with other processors via Eventhus. It may recspond to the
events occurring in that bus and/or send/receive messaszses to/from the

other processors of the sustem.

The anticipated speed of ¢ sincsle eprimary processor executine
instructions from the standard instruction set of the minicomputer
averases on 700000 operations per second.

The processer 15 built of a number of blocks which are workins
simul tanecusly. Each block is equirped with private autonomous control
memory for MICTCRATOSPAMS (fixed and changeable) s autonomous
mrcroerogram controls private reszsisters and workine cstorases and
executive modules.

I-block fetches subsequent instructions from the cache storasers
decodes thems determines the operands and controls the fetchinz of
arsumentis. It 1¢ eguirped with registers which describe the state of
the processore 1ts statuses the virtunl memory cspoce =zic.

E-block constitutes an executive section of the processor. It
includes the sixteen 40-bit seneral purpose operatineg regicsters
together with agrepropriate indices and the arithmetic-lo=zical
processing unit f(ALU). The ALU 1s intended to be built of suitable
sesments to erovide for wvariable lensth of operands. The wmaxisum
lensth of orerands serviced in ALU is 80 bits.

A-block 1s an optional section of the proceseor used for
imeplementation of additional non-standard machine incstructions. The

structure of A-block leaves it open for imelementation of vector
instructions: specialized functions for signal processing (e.s. Fast
Fourier Tronsforms filiter operations etc.). This block may be easily
exchansed.

C-block communicatecs the processor with the other processors of the
system via Eventbus. It is equirrped with facillitiecs which orsanize
the interrupt servicer determine the processor priority related to the

£|1

priorities of other rrocezzors and allow to dicensce hordunre
wmalfunctions of the processor. C-block aleo undertakes emeracncy
actions caused by exceptional events occurrins in hardware (i.e. power
failure).

The moin processors will be implemented mainly in the Schottky TTL
technolosy (2 - 3 ns propasation delay) usins 4 or 8 bit-wide
bit-slices (e.s. AMD 2900). Fast internal memories (register files
scratchrpad memory) will emplovy static birolar memories with access
time of S0 - 70 ns. For cacher about 100 nc RAMs will be uced.

At least several customized chips will be emrloveds mainly
prosrammed losic arravs. Those chips will perform the interprocecc
communications main memory control unitss interface unites associative
memories used by the virtual memory circuite and by the cache.

4. AUXILIARY PROCESSORS

Next to the notion of the Frimary Processor presented in the
previous sections but nonetheless as smuch importants is the notion of
the Auxiliary Frocessor which is o substantial component of the system
architecture. The basic desisn elaborates the followins
representatives of this component:

¢ supervisor and controller of system activity (System Monitor)s

¢ memory manager and virtualizer (Virtual Memory Processor) s

¢ emulator (Emulation Processor):

¢ rotating mass storase and tape controller (Mass Memory Processor):s
$ external interface controller (Interface Processor):
¢ 1nput/outeput reguest handler (I/0 Processor).

It is intended that moset of the auxiliory procescsorss in particular
those which are used to .orsanize the cooperation of the sustem with
several character—oriented peripheral devices or special ized
measurement and industirial connections:s be highlys if not comeletel yy

Uﬁip]..Ed »

The auxiliary processors will he built oround fixed-instruction—cet
microprocessor chips (e.s. INTEL 8080/84y INTEL 8088/8%2y Z8000)
courled with various supporting L3I chirs ond peripheral rcontrol
chips. Whenever the speed of data transfer excesds 100 Kb/ss the
auxiliary processors are sugssested to be built of fast bieclar chips.

Some other tupes of auxiliare processorsy not mentioned in the list
aboves may be desisnedr put into production and dicstributeds if a need
for them develops in the future.

The auxiliary procescsors cooperate with the Main Memory of +the
system via the Buytebus interface. Data width depends on the processor

tupe and voariecs between 1 and 8 butes per one interface cycle.

Af ter havins received an reauest the auxiliary procescor initiates
the demanded action on the pertinent device. While this action is in
progressy the auxiliary processor supervicees its detecte any faults
ands 1f possible» attempis to correct them. It wmavy aqlso perform some
preliminary Preprocessing of the transferred datay as
decodins/encodinsy computing ECC or BCC: packing or unpackina {(line

43

protocol framess dick recordsy etc.’). UWhern the requested oaction is
finisheds unexpectedls terminated or suvuspended the auxiliary processor

sends a suitable return information (interruet) Yo the bprimary
processors via Eventbus.

The precedence of auxiliary processors in accessing 1interfaces 1is
determined by their relative priorities.

4n auxiliary procecssor may act either in a selector mode (e.s. for

fast rotatins media) or in a multiplexer mode (for most of tupical
devices).

Local memory of an acuxiliary processory wherever it i1c presents may
be used as an intermediate buffer storage or as an area to keep some

status information (e.s. for processors which control some complex and
sophisticated interfacest Camacs IEEE-488s etc.).

The standard assortment of oeperations of an auxiliary procescor may

be easily extended dve to the fact that wmost of 1its functions are
defined in exchanseable softuware.

The assigsnment of functions to the particular types of auxiliary
processors 1s presented below:

Sustem Monitor

This auxiliary processor supervises the entire
computational activity of the suystem. It initiates the
operating system (bootstrap)r validates sustem consistency
and undertakes suitable emersency actions (e.s. csystenm
restart and recovery). Suystem Monitor may alco be able to
execute (and report) sowe performance tests which could
detect occassional bottle-necks and other critical
situations in the suctem. Having a privilesed access to
all system resourcesy the Suycstem Monitor elays an
important part in the situationse when Qa sustem
reconf{isuration has to be performed. In eparticulars the
contents of a special interfoace resister 8PI (Supervisor

Frocessor Index - c¢f 3.1.5) are exclusively chansed by
this auxiliary procescsor. As the Sustem Monitor needs to

have an immediote access to entire central wmemory of the
systemy it seems desirable to use a 32-bit microprocescor
as a base of its imelementation. Nonethelessy some other
splutions (e.g based on bit-slice microprocessors) may
also be taken into account.

System Monitor is interfaced (via some adaptative
laver) with all primary and auxiliary processors of the
suystem. That makes 1t capable of accessings in a

44

privilesed mannery the “private” wsemory area of any
particular processor.

Virtual Memory Processor

Virtual Memory Frocessor is a kind of monitor which
intercepts and fullfils pase faults signalled by primary
processors. Whenever an activity of a primary processor ls
interrurted by a pase faults the rase reauest 1s passed to
the Virtual Memory FProcessor. Then the interrupted primary
processor can either wait for thie reaquest to be satisfied

or continue the execution of another process. A number of
page rceaquests (possibly from different primary processors)

may be aueued in the Virtual Memory Processor which
performs the appropriate alsorithm of pase exchanae for
each of them. It i1c also sussested that the Virtual Memory
Frocessor would be equippred with some functione of
agptimization tor the assumed stratesies of virtualization.
An important point is that the action of resolvins rase
faults 1is exclusively performed 1in the Virtual Memord
Frocessor. No assistance of a primary eprocescor: e¥oept
when the action is initiateds is necessaryd. This kind of
solution has two mador advantases. Fircst: the erimary
praoceszors are not burdened by the problems of wmemory
virtualizationd seconds due to the fact that thoce
problems arc monagsed by one specialized wunits thev are
much easier 12 be solved (synchronized!? thar in the cose
when each primary processor would be responcible for
itself.

Emulation Processor

This kind of auxiliary processor scerves the purpose of
emulating one of alien computins sustems as Fde-11y
Mera—-400y Vax11/780 or others. Emulating alien srosram 1S
seen by a primary processor similorly as an 1/0 cereration.

Moass Memaory Processor

This auxiliary processor controls the activity of disk
drives by initiatins and SuUPErvVicing device—nemory
transactions. An imrortant property of the Mass Memory
Processory which makes it a bit different f{rom other
auxiliary processors in the systemy ics its wider (rossibly
8 butes) access to the Main Memory. Such an access 1s

necessarys due the the sepecicl noture of the transfers
cerformed in this eprocessars to reduecs the interface lond.
Buffer memory of the Mase Mewory Frocessor allows to oavoid
the danaer of breaking o dicsk transfer.

The Mass Memory Processor may alsoc control other
devicesy e.5. masnetic tares.

1/0 Processor

This auxiliary processor interfaces the cycstem with slow
character—oriented perirheral devicess as display
monitorss printerss readerss plotterse and floerpu-dicke.

Instrumentation Processor

This local auxiliary orocessor supervises a configuration
of o few IEEE 488 interface busses f(e.a. ur to 4 buses).
It i= also used to control the send and receive operations
in the JEEE 488 interface. The Inctrumentation Freocessor
interprets a service prosram which implements an alsorithm
of measurement or communication. It supervices the

execution of the measurement proesram and interprete the
instrument data.

Communication FProcessor

The Communication Frocecssor provides for remote
caooperation of the desisned wminicomputer with other
computers and devices via telex and phone lines as well as
via specialized connections of data transmiscion (e.9.
local networks).

The Comwmunication Frocessor erovides for a link-level
secscaae transfer with error detection and correciion.

9. SOFTWARE

Emplosing Auxiliary Frocessors leads to considerable unification of
cooperation erincirles between the suystem and environment: at custem
level and wuser software level as well. Charsinz the Auxiliary
Frocessors with the 170 oererations cauvuses that the oreratins suscstem
layer including the set of device <service wmodules (handlere or
drivers) will be almost entirely executed by the microerocessors. This
fact forces the specific structuralization of the operatins system and
necessity of accurate elaboration of the interconnection between
primarys and auxiliary processors. The advantasze of this solution
(after fixins the princieles of cooeeration) is the feasibility of
gasdsy even 1ntrusive division of soals at the system coftuware.

...47._

5.1. Hardware sueport for synchronization

A programmer writing parallel prosrams (e.g. operating suystem) mucst
employ some suynchronizotion tools to assure the corectness of the
praoaram execution. These +tools acauire some particular importance in
multiprocessor environments where there is a necescsity of
sunchronizing several actione performed by a erocescary that in

gingle—-processor syYsiems 90 without any synchronization f(e.c.
interrupt stack servicel.

From the software point of view the decian provides a vusase of the
unified hardware sunchronization mechanism.

Due to the special bit IR in the main interfaces which 1s on durins
the execution of the operations whose mutual exclusion should be
suaranteeds none of the “indivisible” operations can start with the IR
cet and is delaved until the bit is off. Then the processor performing
the indivisible action sets IR (the eprorer mechanism provides that
only one of the processors at the moment is authorised to do so)»

continues the activity and after instruction’s completion cleare the
IE flas.

The advantase of this solution is in the feasibilitw for other

operations to run alons with the indivisible aoperationsy without any
delady.

On the other hand the sunchronization is required by only a few
instructions or actions in the sustemy such as:

-~ queue 1instructionss

- Test & Set Bit and Clear Bit instructionsy

- Exchanse instruction:

~ Exit instruction and hardware interrupt service in a primary
ProOCEessar:

- a change in memory allocation (mappins the virtual addrecses
into the phusical ones).

Eecause sunchronization consisting 1n delavinsg causes alwaus 0@
decrease in sustem performancer the desisn provides only inconsplcuous

but sufficient hardware mechaniem for cunchronization. 0One should
noter that the set of indivisible instructions 1is extendable.

....48...

S.2. Operatinsg Sustem J0FS

The software of the proposed minicomputer is based on the oaperatine
system O0OFS (Obdect Oriented Parallel Sustem). A preliminary version
of thic system 15 now debussed and tested on the Mera-400
minicomputer. The philosorhy of this sustem allows for its simele
implantation to the desisned computers whole in assewbly lanzuase. In
this definite case we can hore that the efficiency of this operatins
sustem will be Joined with the short period of its completion.

The operatins suystewm OGPS is oriented first of all for interactive
work. Howeverrs the Job priorities structure allows for simultaneous
batch processins. The virtual computer as seen by the user can be

briefly characterized by the following points:

¢ the user is independent of the environment elementss not directly
connected with him C¢her)s

¢ the size of the memory field occupied by the user’s prosram is
subJdect to the limitation of the oddress cpace size onlul

¢ the suystem covers the actual number of erocessore in confisuration
ver simultanecusly sgiving the possibility of creatins concurrent
processes (the number of processes is not limited a prioridd it
means that in confisurations with wore than one primary procescor
the user has the feasibility of executing true parallel eprosramss

¢ the user can conveniently create clacsses of problem—ariented filec
and exposes the software for distributed cucstem structures among
others due to hierarchicals tree-like File Sustem strurtiure.

Manys solutions of O0OPS are based on the concepts applied in the
UNIX operating sustem. UNIX was develored by Eell Laboratoriecs Inc.
and runs on many computers (PDP-11i, VAX-11s IPHM-370 and others). In
particular the File Sustem’s orsanization and the erinciesles of
interface with the user are borrowed from UNIYX. Howevers the internal
suystem structure 1is develored orisinally for supporting parallel
computations in multiprocessor environment.

Standard mechanisms offered by the cuystem

e p PEEY T WY WS e mmiy e T SRS TR “__‘"“u“-_-*_-__“*_"— R N R P e o morEn S S R S Rl

The user Jobs processed in the sustem are colled tasks. Each task
mas consist of a unlimited a priori number of processes. The mechanics
for creating new processes and tasks is available to any user prosram.
The allocation of svstem resources for particular taske or processec

4?

is entirely dynamic. The processes belonsin3a to a sinsle task form a
tree structure of an unlimited a priori heisht. There 1s a feasibility
for eparallel (or semi-parallel) execution of several processes in the
systemy in particular parallel execution of a common task’e processes.

Separate processes of a singsle task communicate by means of common

memory. The system provides some natural, simple and efficient tools
which allow to orsanize critical sections.

The standard suynchronizins +tools provided by the sustem and
desisned for orsanizing critical sections aresd

¢ lock(u)s where u 1is a binory variable (semarhore). The operation
enters the critical section controlled by uv. It should be
emphasizeds that the oeeration never causes a passivation of the
processs even in a case when the given critical section is
occupied. In this case the process truins to execute lock is
abandoned by the processor without anu chanse in its status.

¢ unlock(u)s u os above. The operation exits critical section
controlled by u. Formally the operation resets the cemaphore v
only. The processes abandoned by unsuccesful execution of lock
operation gain automatically the possibility to enter the section.

¢ stor(u): U as above. This indiviaible operation passivates the
process executinsg it and simultaneously unlocks the semaphore u.

The purpose of the operations listed above is in orsanizing primary
critical sections desisned for synchronizing short-time seaquences of
instructions (e.s. counter modification). More cophisticated
gunchronizins mechanisms as: monitors (e.s. Hoare's or Loslan'’s):
rendez-vous (Ada) conditional critical sectionss semaphores
(DiJjkstra) or event aqueues are expressible in simple way in terms of
theese operations and the run(P) operations where P is a process

identifiers that activates the siven process after its possible
passivation.

The sustem includes an unified i/o0 suystem based on the file

concertion. A file is o separated and defined finite sequence of butes
vsually located in mass storase. All files accessible throush the

system have unified» transearent structure «~oid of the notion of
“logical record”. In particular it meanc that the bytes within a file
can be accessed randomly. The peripheral devices seen by the system
are also treated as files» with specific limitations (e.s. a
sequential nature of data medium). The system does not interfere in

the contents of filess in particular binary ond coded files are
treated identicalluy.

...S{)...

The unified 1/c structure ewmbodies also pipe-linesy allowine for
information flow between different tasks. Due to this facility it is
prossible to dagsresate many tasks into a sinsle processins line. The
following example of such a line can be siven: preerocessor -- lexical
anal yser =~ parser -— semantic analyeer -- code asenerator -— assembler
(possibly a two-pase one}? -- link-editor. All compilere ewpected in
the sustem form processing lines similar to the above line.

In many applications the wusfulness of interceptines certain
interruets by user’s processes is ceen. The sustem allows to do it in
a convenient: resilient and effective way. This property ic especially
useful 1n real-time applications. In case of particular requiremente
about fast and reliable prosram reaction it is erovided that the whole
code and data of the taosk are resident in the Main Memoru. Such a task

does not take the advantases of the virtual memory mechanicm.

The systew provides for an efficient service of power-alars event
turning to auxiliary power supely and allowing cafe disconnection and
turnins off the cootrolled devices and obdecte. It is to emphasizes
that the system -~ chitecture allows to continue the work in case of
any sinsle eprocessor break-down.

File Sustem

The File CSustew of the O00FS orsanizes files into a tree-like
structurey gilowins amonag others to <implify the erotection
mechanismsy and siving facilities to reference sroupe of filec. This
structure 1is adartable to distributed structure of a computer sustem.
there are special files in the systems called directoriecs containins
lists of file names (includins also directory names). When a reference
to a file is beins mades it is specified by the identifier compoced of
a chain (may be empty) of directors names terminated by the proper
file name. It allows for easy addressing of files exizting even
cutside given compruting environment {(access throush a network).

Files are preliminary obJects in the svctem and a file is one of

the most sisnificant canceptions for the wuser. In particular
executable prosramy subprosrams library or source wmodule are filee and

are identified by their descriptions in directories. Suitabley unified
protection mechanisms provide for a safe wusase of the File Sustes in
the senses that is impossibler for exameles to execute a file which
does not contain o ready-to-so (executable) binary module. The same
mechanisms are emploved also for determination of user’s ability to
access (actively or passivels) particular files.

[lividing files into different directories is user’<c Job. Usuallyu it

reflects applicative hierarchy of elaborated by him (her) problemcs. It

allows the user to concentirate exceptually on oaspects that ore
interesting him f(her) at the moment.

The file svystem due to ta its hierarchical constructions provides
the possibility of simple 1insertion of the suystewm into an exiceting
computer network and creation of ownsy properly oriented networks
supported by the adeauates fitted for aerlicationes sgeometry. In

particular the possibility for implementation of distributed,
hierarchical data bases was considered.

%.%. Standard sof tware

The standard software for the minicomputer is concentrated around
the operatins sustem OOFS. The ideas of that software are strictls
connected with the sustem structurer in particulor with the File
System. The standard softwares alons with the tools offered directly
by QOFPS comerise the base for software environments of the new

minicomputer. The most sisnificant utilities ares

¢ User’s Directives Interpreter (Job Contraol) beins the only system
interface with the interactive user:

¢ text editor EDMs based on editors ED and EX which are accessible
under UNIX operating sustemy

$ stream editorr compatible with EIIM (resular expressions)s usable as
g filter for text filesy

% text files precrocessor which allows includins the contents of
specified files into procescsed text and extendins macro calle. The
PTERTOCESSOT should be automatically invoked hefore each
compilation of o prosramming lansuase wsed. It allows to give o
library-like nature to a certain piecec of source text and to the
usage of slobally defined cohjectss ¢s constants derendent on the
actual configuration or application. The macro syctem of the
preprocessor allows to aerly parametrized mocros.

¢ hish-level languagses compilerss
Loglan-79: Fortran IVs Pascals Cs Basic

and in the future:
COROLy AFLs FROLDGy FORTRAN-77s LISPy LOGLAN-82¢

¢ GASS macroassemblers based on existins ascembler Gass—-400 for
minicomputer Mera-400¢

¢ link-editory
¢ set of debusserss suitable for particular programming lansuages.

The debugsers are supported by the poscibility of ctep-by-ctep
prosram executions

¢ universal screen editorsy

$ text formatters for publishinsy compatible with NROFFs TROFF and
TEX?

¢ on-line calculatory

- BT

¢ yniversol cort/seres croarams

¢ ctandard subprogsram libraries, they are auvtomotically ccarched when
binary prcarame are linked. The link-editors 1nvoked by a compiler
(assembler) after transiation completions cearches the libraries
specified by invokins prosram. The sain sqstem library includes
input/output-y binary/character conversion- and PTrogramming
lansuases standard functione subprogsrams.

The tooles for creating software

e e R ey R s P B S e ol S e el e B S SR e Sl s e e e S S —

among means designed for softwore creotinsg first of all there ore
some tocls for compiler writine. Lexical analysere senerator LEX and
parsers senerator YACD will be ewploucsd here. YACC providec also the
possibility for cuitable creation of semontic anolysere bacsed on 1tc
output. These toole are borrowed from another computer?s coftware and
are well known in the world. They have edarned sood orinion alreadz. In
particular YACC is very populars not only amons compilers writerzs but
also among resular usere. Especially for the new minicomputer a
unified code sgenerator will be provided. It will be erounded on the
inference~tree suerplied by a YACC*s parser and independently on the
source lansuvase used it will aeply unified code optimization
principles. This approach to the compilers eroduction allows to
minimize the efforts in introducing new elemznts to the cet of
progromming lansuages avoilable on the new minicomputer.

The interfoace between 0DOFS and the erosrammer

[—————— T, - TR T R S B I L T e e T e

4 programmer who works interactively communicotes with the custem
by means of command interepreters invoked aotomatically when he (she)
loss in at his (her) terminal. The interrreter reade user’s commandsy
executes them and writes oput messoses. A single command consiclis of «
name of file containing the prosram %o be executed and of a chain of

naraketerss, which are possed 4o the invoked bprosras. A command mQy
aleo include o few parte of thot shaope connected in o seecial way.

Such a command 1e interereted as a request for invoking cpecified
programs and linkine them with the aid of the pipe-lining into einsle
processing line.

The wuser mas also reaquest to run the prosrom in the bockasrounds
concurrently to the further command processine. The user ic able to
ctop such a progsramr to test ite state and to make uep his (her) mind
about 1ite nearest future (continuation or aborticen). The number of

tasks run at the backsround level is unlimited a priori.

In a eparticular cases when the uvser-cspecified file doesn’t contain
any executable prosram (information about it is located in the file
description in the File Sustem)s the file is treated as a scriet-file
containing commands for the interpreter. It chould be noted heres that
the command interpreter is same program like another utilities and can
be called recursively. The above mechaniems together with the
possibility for task creation from a vser’s erogram eliminate the
necessity of emplosing macros at the interpreter level. Indeeds the
means obtained in this way are incomparably more expressive than the
most sophisticated macro-systea.

1]

L3]

L4l

L3

L6]

7]

BIBLIOGRAFHY

Jezierska-Zienmkiewiczy E. (ed.): Opracowanie ramowel} hkoncepcdl i
okreslenie wmozliwosci renlizacul minikomeputera wyliorzuctuiaceso
dotychczasows dorobek PRL w suystemach minikomputerowuchs IMM
works - int. publ. (1981) (in Folish).

Kreczmars A. (ed.): Report on the prosramminsg lansunse LOGLAM-793
int. publ. UW (1982).

Eckhousey E. and Levys A.: Vax 11/780 Manualy Disital Egquirment
Corporation (1981).

Janickis A. {ed.): PRasic desisn of a new minicomputer (the =zo
called "New Mera-4007)y TKP Consultants Ltd (1983)s unvpubliched.

Jezierska-Ziemkiewiczrs E. and Ziemkiewiczs A.: Struktura systemu
New Mera 400 preprint (1983) (in Folich).

Findeisen:s F. and Gburzunelis pP.: Koncepc.Ja PTOCEEOTQ
podstawoweso (wraz 2z lista 1nstrukcul) 1 systemu operacyJneso
OOFSy epreprint (1983) (in Folish).

Litwiniuks A.: Komputer a kompilator. Postulowane wlasciwosci
sprzetuy preprint (1983) (in Polich).

SPRAWODZINDANTIA

INSTYTUTU INFORMATYKTI U. H.

—,..-_-u.-—i-ﬂ_ﬂ#l—ﬂ-_““ﬂ-—hﬂ—*——“““——ﬂ- —_h_—___"““_--._ﬂ_—_ —““_-—_--u“_-ﬂ_—-“*—__-“_-“

F.Findeisens P.Gburzunskis E.Jeziecrska-Ziembiewiczs
A.Z1emkicewicz

FROPOZYCJA ARCHITEKTURY MINIKOMPUTERA

Streszczenie

W niniedszed eracy przedstawiono koncercde minikomputera
PTIZeznaczonesn m.l. do realizacJi Jgzukow prosramowanio zorientowanuch
obigktowo (np. Loglan-82). W oprodekcies szczesdlnie vwzaledniono
mozliwosC wukonswania prosramtw wspdtbieznuchy k¥adgc Jednoczesnie
nacisk na mozliwoEd efektuwne) implementacdi tokick Jgzukduw
proaramowania Jak Fascal 1 Fortran. Werawdzie istota proponowane.
architektury rozostade w duchu traducdi wmazzyny von MNeumanas tum
niemnied zastosowano kilka nowszsch rozwiqzods Jak ne. oddzielenie
orzestrzeni danych od kodur wizloprocesorowosds zactosowanie
nikrTorrocesorow do wseomaasania operac.ii peryferv.inzch.

